カイロス時間:All Dogs Live in the Moment--飼い主と一緒なら、何歳からでも犬は変われる

[2023]ADHD様犬のセロトニンとドーパミンの血中濃度

Serotonin and Dopamine Blood Levels in ADHD-Like Dogs

書誌情報González-Martínez, Ángela, Susana Muñiz de Miguel, Noemi Graña, Xiana Costas, and Francisco Javier Diéguez. 2023. “Serotonin and Dopamine Blood Levels in ADHD-Like Dogs” Animals 13, no. 6: 1037. https://doi.org/10.3390/ani13061037

Notice

表題の論文を日本語訳してみました。翻訳アプリにかけた日本語訳を英文に照らして修正していますが、表記のゆれや訳の間違いがあるかもしれません。正確に内容を知りたい方は、原文をご覧ください。

Abstract:要旨

ヒトと同様に、犬も注意欠陥多動性障害様(ADHD様)行動を自然に起こすことがあり、高いレベルの多動性/衝動性、注意欠陥の問題を示すことから、家庭犬はADHDのモデル動物になる可能性がある。

ADHDは、セロトニンやドーパミンなど多くの神経伝達物質が関与する非常に複雑な病態生理を有している。

研究の目的は、ADHD様症状を呈する犬の血清セロトニンおよびドーパミン濃度を評価することであった。

58頭の犬が研究対象となり、そのうち36頭は身体的および行動的評価の結果、ADHD様であると分類された。

さらに、犬の飼い主にはC-BARQ、Dog Impulsivity Assessment Scale、Dog-ADHD rating scaleを含む科学的に検証された一連のアンケートを行った。

行動評価の後、すべての動物から血清を採取し、セロトニンとドーパミンを測定するための市販のELISA検査で分析した。

Kruskal-Wallis検定とLasso回帰を適用し、両神経伝達物質とADHD様行動(臨床評価および各種質問票による評価)との関係を評価した。

臨床的にADHD様行動と分類された犬では、セロトニンとドーパミンの濃度が低かった。

さらに、セロトニンとドーパミンの濃度は攻撃性、多動性、衝動性とも関連していた。

セロトニン濃度の低下は、恐怖、愛着、触覚過敏とも関連していた。

最後に、我々のデータは、セロトニンおよびドーパミンとADHD様行動との間に強い関係があることを示唆していたことに留意しなければならない。

Summary:概要

注意欠陥多動性障害(ADHD)は、主に小児や青年が罹患する比較的一般的な神経発達障害である。

ADHDは重大な社会的スティグマ、心理社会的逆境、作業能力の低下と関連している。

ヒトと同様、イヌもADHDに似た行動をとることがあるが、現在までのところ、イヌ種におけるこの症状に関する研究はほとんどない。

そこで本研究では、ヒトのADHD患者に見られるような徴候を持つ犬(対照犬と比較)の血清セロトニンとドーパミンのレベルを、臨床的評価と異なる行動尺度によって分析した。

得られた結果から、ADHDに類似した行動徴候を示す犬では、両方の神経伝達物質が低濃度で観察される傾向があることが示された。

この知見は、犬におけるこの障害の診断と治療の研究に役立つと思われる。

ADHD様の関連行動は、家庭における犬たちの正常な共存を乱し、今日大きな社会的・動物福祉的問題であり続けている飼育放棄の一因となる可能性がある。

References:参考文献

  1. Paclt, I.; Koudelová, J.; Křepelová, A.; Uhlíková, P.; Gazdíková, M.; Bauer, P. Biochemical Markers and Genetic Research of ADHD. Neuroendocrinol. Lett. 2005, 26, 423–430.
  2. Morrison, J. DSM-5® Guía para el Diagnóstico Clínico; Editorial El Manual Moderno: Mexico City, Mexico, 2015.
  3. Faraone, S.V.; Biederman, J.; Spencer, T.J.; Aleardi, M. Comparing the Efficacy of Medications for ADHD Using Meta-Analysis. Medscape Gen. Med. 2006, 8, 4.
  4. Hoogman, M.; Bralten, J.; Hibar, D.P.; Mennes, M.; Zwiers, M.P.; Schweren, L.S.J.; van Hulzen, K.J.E.; Medland, S.E.; Shumskaya, E.; Jahanshad, N.; et al. Subcortical Brain Volume Differences in Participants with Attention Deficit Hyperactivity Disorder in Children and Adults: A Cross-Sectional Mega-Analysis. Lancet Psychiatry 2017, 4, 310–319.
  5. Xavier Castellanos, F.; Lee, P.P.; Sharp, W.; Neal Jeffries, M.O.; Greenstein, D.K.; Clasen, L.S.; Blumenthal, J.D.; Regina James, M.S.; Ebens, C.L.; James Walter, B.M.; et al. Developmental Trajectories of Brain Volume Abnormalities in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder. JAMA 2002, 288, 1740–1748.
  6. Hoogman, M.; Rijpkema, M.; Janss, L.; Brunner, H.; Fernandez, G.; Buitelaar, J.; Franke, B.; Arias-Vásquez, A. Current Self-Reported Symptoms of Attention Deficit/Hyperactivity Disorder Are Associated with Total Brain Volume in Healthy Adults. PLoS ONE 2012, 7, e31273.
  7. Shaw, P.; Gilliam, M.; Liverpool, M.; Weddle, C.; Malek, M.; Sharp, W.; Greenstein, D.; Evans, A.; Rapoport, J.; Giedd, J. Cortical Development in Typically Developing Children with Symptoms of Hyperactivity and Impulsivity: Support for a Dimensional View of Attention Deficit Hyperactivity Disorder. Am. J. Psychiatry 2011, 168, 143–151.
  8. Vas, J.; Topál, J.; Péch, É.; Miklósi, Á. Measuring Attention Deficit and Activity in Dogs: A New Application and Validation of a Human ADHD Questionnaire. Appl. Anim. Behav. Sci. 2007, 103, 105–117.
  9. Lit, L.; Schweitzer, J.B.; Iosif, A.M.; Oberbauer, A.M. Owner Reports of Attention, Activity, and Impulsivity in Dogs: A Replication Study. Behav. Brain Funct. 2010, 6, 1.
  10. Piotti, P.; Satchell, L.P.; Lockhart, T.S. Impulsivity and Behaviour Problems in Dogs: A Reinforcement Sensitivity Theory Perspective. Behav. Process. 2018, 151, 104–110.
  11. Sonuga-Barke, E.J.S. Causal Models of Attention-Deficit/Hyperactivity Disorder: From Common Simple Deficits to Multiple Developmental Pathways. Biol. Psychiatry 2005, 57, 1231–1238.
  12. Del Campo, N.; Chamberlain, S.R.; Sahakian, B.J.; Robbins, T.W. The Roles of Dopamine and Noradrenaline in the Pathophysiology and Treatment of Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2011, 69, e145–e157.
  13. Cho, H.S.; Baek, D.J.; Baek, S.S. Effect of Exercise on Hyperactivity, Impulsivity and Dopamine D2 Receptor Expression in the Substantia Nigra and Striatum of Spontaneous Hypertensive Rats. J. Exerc. Nutr. Biochem. 2014, 18, 379–384.
  14. Mogavero, F.; Jager, A.; Glennon, J.C. Clock Genes, ADHD and Aggression. Neurosci. Biobehav. Rev. 2018, 91, 51–68.
  15. Mü ller Smith, K.; Daly, M.; Fischer, M.; Yiannoutsos, C.T.; Bauer, L.; Barkley, R.; Navia, B.A. Association of the Dopamine Beta Hydroxylase Gene with Attention Deficit Hyperactivity Disorder: Genetic Analysis of the Milwaukee Longitudinal Study. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2003, 119, 77–85.
  16. Luescher, U.A. Hyperkinesis in Dogs: Six Case Reports. Can. Vet. J. 1993, 34, 368–370.
  17. Piturru, P. Methylphenidate Use in Dogs with Attention Deficit Hyperactivity Disorder (ADHD). A Case Report of a Weimaraner Bitch. Tierarztl. Prax. Ausgabe K Kleintiere-Heimtiere 2014, 42, 111–116.
  18. Lowe, N.; Kirley, A.; Hawi, Z.; Sham, P.; Wickham, H.; Kratochvil, C.J.; Smith, S.D.; Lee, S.Y.; Levy, F.; Kent, L.; et al. Joint Analysis of the DRD5 Marker Concludes Association with Attention-Deficit/Hyperactivity Disorder Confined to the Predominantly Inattentive and Combined Subtypes. Am. J. Hum. Genet. 2004, 74, 348–356.
  19. Kubinyi, E.; Vas, J.; Hejjas, K.; Ronai, Z.; Brúder, I.; Turcsán, B.; Sasvari-Szekely, M.; Miklósi, Á. Polymorphism in the Tyrosine Hydroxylase (TH) Gene Is Associated with Activity-Impulsivity in German Shepherd Dogs. PLoS ONE 2012, 7, e30271.
  20. Hejjas, K.; Vas, J.; Topal, J.; Szantai, E.; Ronai, Z.; Szekely, A.; Kubinyi, E.; Horvath, Z.; Sasvari-Szekely, M.; Miklosi, A. Association of Polymorphisms in the Dopamine D4 Receptor Gene and the Activity-Impulsivity Endophenotype in Dogs. Anim. Genet. 2007, 38, 629–633.
  21. Bolaños, C.A.; Willey, M.D.; Maffeo, M.L.; Powers, K.D.; Kinka, D.W.; Grausam, K.B.; Henderson, R.P. Antidepressant Treatment Can Normalize Adult Behavioral Deficits Induced by Early-Life Exposure to Methylphenidate. Biol. Psychiatry 2008, 63, 309–316.
  22. Neil, R.; Carlson, B. Physiology of Behavior, 13th ed.; Pearson Education: Essex, UK, 2022.
  23. Quist, J.F.; Barr, C.L.; Schachar, R.; Roberts, W.; Malone, M.; Tannock, R.; Basile, V.S.; Beitchman, J.; Kennedy, J.L. The Serotonin 5-HT1B Receptor Gene and Attention Deficit Hyperactivity Disorder. Mol. Psychiatry 2003, 8, 98–102.
  24. Banerjee, E.; Nandagopal, K. Does Serotonin Deficit Mediate Susceptibility to ADHD? Neurochem. Int. 2015, 82, 52–68.
  25. Bleuer-Elsner, S.; Muller, G.; Beata, C.; Zamansky, A.; Marlois, N. Effect of Fluoxetine at a Dosage of 2-4 Mg/Kg Daily in Dogs Exhibiting Hypersensitivity-Hyperactivity Syndrome, a Retrospective Study. J. Vet. Behav. 2021, 44, 25–31.
  26. Masson, S.; Gaultier, E. Retrospective Study on Hypersensitivity-Hyperactivity Syndrome in Dogs: Long-Term Outcome of High Dose Fluoxetine Treatment and Proposal of a Clinical Score. Dog Behav. 2018, 4, 15–32.
  27. Lunõ, I.; Rosado, B.; Palacio, J.; Villegas, A.; González-Martínez, Á.; Garciá-Belenguer, S. Hyperactivity in a Weimaraner Dog. Dog Behav. 2015, 1, 32–40.
  28. Barkley, R.A. Behavioral Inhibition, Sustained Attention, and Executive Functions: Constructing a Unifying Theory of ADHD. Psychol. Bull. 1997, 121, 65–94.
  29. Coleman, M. Serotonin Concentrations in Whole Blood of Hyperactive Children. J. Pediatr. 1971, 78, 985–990.
  30. Spivak, B.; Vered, Y.; Yoran-Hegesh, R.; Averbuch, E.; Mester, R.; Graf, E.; Weizman, A. Circulatory Levels of Catecholamines, Serotonin and Lipids in Attention Deficit Hyperactivity Disorder. Acta Psychiatr. Scand. 1999, 99, 300–304.
  31. Lombroso, P.J.; Quist, J.F.; Kennedy, J.L. Genetics of Childhood Disorders: XXIII. ADHD, Part 7: The Serotonin System. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 253–256. [Google Scholar]
  32. Wright, H.F.; Mills, D.S.; Pollux, P.M.J. Behavioural and Physiological Correlates of Impulsivity in the Domestic Dog (Canis familiaris). Physiol. Behav. 2012, 105, 676–682. [Google Scholar] [CrossRef] [Green Version]
  33. Rosado, B.; García-Belenguer, S.; León, M.; Chacón, G.; Villegas, A.; Palacio, J. Blood Concentrations of Serotonin, Cortisol and Dehydroepiandrosterone in Aggressive Dogs. Appl. Anim. Behav. Sci. 2010, 123, 124–130. [Google Scholar] [CrossRef]
  34. León, M.; Rosado, B.; García-Belenguer, S.; Chacón, G.; Villegas, A.; Palacio, J. Assessment of Serotonin in Serum, Plasma, and Platelets of Aggressive Dogs. J. Vet. Behav. Clin. Appl. Res. 2012, 7, 348–352. [Google Scholar] [CrossRef]
  35. Rosado, B.; García-Belenguer, S.; Palacio, J.; Chacón, G.; Villegas, A.; Alcalde, A.I. Serotonin Transporter Activity in Platelets and Canine Aggression. Vet. J. 2010, 186, 104–105. [Google Scholar] [CrossRef]
  36. Amat, M.; Le Brech, S.; Camps, T.; Torrente, C.; Mariotti, V.M.; Ruiz, J.L.; Manteca, X. Differences in Serotonin Serum Concentration between Aggressive English Cocker Spaniels and Aggressive Dogs of Other Breeds. J. Vet. Behav. Clin. Appl. Res. 2013, 8, 19–25. [Google Scholar] [CrossRef]
  37. Hoppe, N.; Bininda-Emonds, O.R.P.; Gansloßer, U. Correlates of Attention Deficit Hyperactivity Disorder (ADHD)-Like Behavior in Domestic Dogs: First Results from a Questionnaire-Based Study. Vet. Med.–Open J. 2017, 2, 95–131. [Google Scholar] [CrossRef]
  38. Serpell, J.A.; Hsu, Y. Development and Validation of a Novel Method for Evaluating Behavior and Temperament in Guide Dogs. Appl. Anim. Behav. Sci. 2001, 72, 347–364. [Google Scholar] [CrossRef]
  39. Duffy, D.L.; Hsu, Y.; Serpell, J.A. Breed Differences in Canine Aggression. Appl. Anim. Behav. Sci. 2008, 114, 441–460. [Google Scholar] [CrossRef]
  40. Serpell, J.A.; Hsu, Y. Effects of Breed, Sex, and Neuter Status on Trainability in Dogs. Anthrozoös 2005, 18, 196–207. [Google Scholar] [CrossRef] [Green Version]
  41. Wright, H.F.; Mills, D.S.; Pollux, P.M.J. Development and Validation of a Psychometric Tool for Assessing Impulsivity in the Domestic Dog (Canis familiaris). Int. J. Comp. Psychol. 2011, 24, 210–225. [Google Scholar] [CrossRef]
  42. Riemer, S.; Mills, D.S.; Wright, H. Impulsive for Life? The Nature of Long-Term Impulsivity in Domestic Dogs. Anim. Cogn. 2014, 17, 815–819. [Google Scholar] [CrossRef] [Green Version]
  43. Crockett, M.J.; Clark, L.; Robbins, T.W. Reconciling the Role of Serotonin in Behavioral Inhibition and Aversion: Acute Tryptophan Depletion Abolishes Punishment-Induced Inhibition in Humans. J. Neurosci. 2009, 29, 11993–11999. [Google Scholar] [CrossRef] [Green Version]
  44. Baumann, M.H.; Williams, Z.; Zolkowska, D.; Rothman, R.B. Serotonin (5-HT) Precursor Loading with 5-Hydroxy-l-Tryptophan (5-HTP) Reduces Locomotor Activation Produced by (+)-Amphetamine in the Rat. Drug Alcohol Depend. 2011, 114, 147–152. [Google Scholar] [CrossRef] [Green Version]
  45. Kabuki, Y.; Yamane, H.; Hamasu, K.; Furuse, M. Different Locomotor Activities and Monoamine Levels in the Brains of Djungarian Hamsters (D. sungorus) and Roborovskii Hamsters (D. roborovskii). Exp. Anim. 2008, 57, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Takahashi, H.; Takada, Y.; Urano, T.; Takada, A. 5-HT4 Receptors in the Hippocampus Modulate Rat Locomotor Activity. Hippocampus 2002, 12, 304–310. [Google Scholar] [CrossRef] Hechtman, L. Developmental, Neurobiological, and Psychosocial Aspects of Hyperactivity, Impulsivity, and Inattention. Child Adolesc. Psychiatry 1991, 318–330. [Google Scholar] Peremans, K.; Audenaert, K.; Coopman, F.; Blanckaert, P.; Jacobs, F.; Otte, A.; Verschooten, F.; Van Bree, H.; Van Heeringen, K.; Mertens, J.; et al. Estimates of Regional Cerebral Blood Flow and 5-HT2A Receptor Density in Impulsive, Aggressive Dogs with 99mTc-ECD and 123I-5-I-R91150. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 1538–1546. [Google Scholar] [CrossRef] [PubMed] Biederman, J.; Faraone, S.V.; Spencer, T.; Wilens, T.; Norman, D.; Lapey, K.A.; Mick, E.; Lehman, B.K.; Doyle, A. Patterns of Psychiatric Comorbidity, Cognition, and Psychosocial Functioning in Adults with Attention Deficit Hyperactivity Disorder. Am. J. Psychiatry 1993, 150, 1792–1798. [Google Scholar] [CrossRef] [PubMed] Sobanski, E. Psychiatric Comorbidity in Adults with Attention-Deficit/Hyperactivity Disorder (ADHD). Eur. Arch. Psychiatry Clin. Neurosci. 2006, 256, i26–i31. [Google Scholar] [CrossRef] Rucklidge, J.J.; Downs-Woolley, M.; Taylor, M.; Brown, J.A.; Harrow, S.E. Psychiatric Comorbidities in a New Zealand Sample of Adults with ADHD. J. Atten. Disord. 2016, 20, 1030–1038. [Google Scholar] [CrossRef] [PubMed] Mikkola, S.; Salonen, M.; Puurunen, J.; Hakanen, E.; Sulkama, S.; Araujo, C.; Lohi, H. Aggressive Behaviour Is Affected by Demographic, Environmental and Behavioural Factors in Purebred Dogs. Sci. Rep. 2021, 11, 9433. [Google Scholar] [CrossRef] Deakin, J.F.W.; Graeff, F.G. 5-HT and Mechanisms of Defence. Author’s Response. J. Psychopharmacol. 1991, 5, 339–341. [Google Scholar] [CrossRef] [PubMed] Deakin, J.F.W. The Origins of “5-HT and Mechanisms of Defence” by Deakin and Graeff: A Personal Perspective. J. Psychopharmacol. 2013, 27, 1084–1089. [Google Scholar] [CrossRef] [PubMed] Corchs, F.; Nutt, D.J.; Hince, D.A.; Davies, S.J.C.; Bernik, M.; Hood, S.D. Evidence for Serotonin Function as a Neurochemical Difference between Fear and Anxiety Disorders in Humans? J. Psychopharmacol. 2015, 29, 1061–1069. [Google Scholar] [CrossRef] [PubMed] Van Ameringen, M.; Mancini, C.; Oakman, J.M.; Farvolden, P. Selective Serotonin Reuptake Inhibitors in the Treatment of Social Phobia: The Emerging Gold Standard. CNS Drugs 1999, 11, 307–315. [Google Scholar] [CrossRef] Den Boer, J.A.; Bosker, F.J.; Slaap, B.R. Serotonergic Drugs in the Treatment of Depressive and Anxiety Disorders. Hum. Psychopharmacol. 2000, 15, 315–336. [Google Scholar] [CrossRef] Seksel, K.; Lindeman, M.J. Use of Clomipramine in Treatment of Obsessive-Compulsive Disorder, Separation Anxiety and Noise Phobia in Dogs: A Preliminary, Clinical Study. Aust. Vet. J. 2001, 79, 252–256. [Google Scholar] [CrossRef] Ibáñez, M.; Anzola, B. Use of Fluoxetine, Diazepam, and Behavior Modification as Therapy for Treatment of Anxiety-Related Disorders in Dogs. J. Vet. Behav. Clin. Appl. Res. 2009, 4, 223–229. [Google Scholar] [CrossRef] Shannon, C.; Schwandt, M.L.; Champoux, M.; Shoaf, S.E.; Suomi, S.J.; Linnoila, M.; Higley, J.D. Maternal Absence and Stability of Individual Differences in CSF 5-HIAA Concentrations in Rhesus Monkey Infants. Am. J. Psychiatry 2005, 162, 1658–1664. [Google Scholar] [CrossRef] [Green Version] Kiser, D.; SteemerS, B.; Branchi, I.; Homberg, J.R. The Reciprocal Interaction between Serotonin and Social Behaviour. Neurosci. Biobehav. Rev. 2012, 36, 786–798. [Google Scholar] [CrossRef] Kinnally, E.L.; Capitanio, J.P.; Leibel, R.; Deng, L.; Leduc, C.; Haghighi, F.; Mann, J.J. Epigenetic Regulation of Serotonin Transporter Expression and Behavior in Infant Rhesus Macaques. Genes Brain Behav. 2010, 9, 575–582. [Google Scholar] [CrossRef] [Green Version] Hejjas, K.; Vas, J.; Kubinyi, E.; Sasvari-Szekely, M.; Miklosi, A.; Ronai, Z. Novel Repeat Polymorphisms of the Dopaminergic Neurotransmitter Genes among Dogs and Wolves. Mamm. Genome 2007, 18, 871–879. [Google Scholar] [CrossRef] [PubMed] Hejjas, K.; Kubinyi, E.; Ronai, Z.; Szekely, A.; Vas, J.; Miklósi, Á.; Sasvari-Szekely, M.; Kereszturi, E. Molecular and Behavioral Analysis of the Intron 2 Repeat Polymorphism in the Canine Dopamine D4 Receptor Gene. Genes Brain Behav. 2009, 8, 330–336. [Google Scholar] [CrossRef] Sulkama, S.; Puurunen, J.; Salonen, M.; Mikkola, S.; Hakanen, E.; Araujo, C.; Lohi, H. Canine Hyperactivity, Impulsivity, and Inattention Share Similar Demographic Risk Factors and Behavioural Comorbidities with Human ADHD. Transl. Psychiatry 2021, 11, 501. [Google Scholar] [CrossRef] Zink, M.C.; Farhoody, P.; Elser, S.E.; Ruffini, L.D.; Gibbons, T.A.; Rieger, R.H. Evaluation of the Risk and Age of Onset of Cancer and Behavioral Disorders in Gonadectomized Vizslas. J. Am. Vet. Med. Assoc. 2014, 244, 309–319. [Google Scholar] [CrossRef] Fadel, F.R.; Driscoll, P.; Pilot, M.; Wright, H.; Zulch, H.; Mills, D. Differences in Trait Impulsivity Indicate Diversification of Dog Breeds into Working and Show Lines. Sci. Rep. 2016, 6, 22162. [Google Scholar] [CrossRef] [Green Version] Jagoe, A.; Serpell, J. Owner Characteristics and Interactions and the Prevalence of Canine Behaviour Problems. Appl. Anim. Behav. Sci. 1996, 47, 31–42. [Google Scholar] [CrossRef] Serpell, J.A.; Duffy, D.L. Aspects of Juvenile and Adolescent Environment Predict Aggression and Fear in 12-Month-Old Guide Dogs. Front. Vet. Sci. 2016, 3, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version] Yang, J.; Langford, F.; Kiddie, J. Risk Factors for Aggressive Behaviour in Domestic Dogs (Canis familiaris), as Reported by Owners in Mainland China. Appl. Anim. Behav. Sci. 2021, 234, 105211. [Google Scholar] [CrossRef] Wipfli, B.M. Serotonin and Psychological Variables in the Relationship between Exercise and Mental Health; Arizona State University: Tempe, Arizona, 2008; Volume 69. [Google Scholar] Tiira, K.; Lohi, H. Early Life Experiences and Exercise Associate with Canine Anxieties. PLoS ONE 2015, 10, e0141907. [Google Scholar] [CrossRef] [PubMed] [Green Version]

Keywords: attention deficit; canine; hyperactivity behavior; Lasso regression; neurotransmitters

https://knowledge.kairosdog.info/wp-admin/
#dbe2e8

Eden
#0c5155
rgb(12, 81, 85)

Surfie Green
#0e6e71
rgb(14, 110, 113)

Blue Chill
#139a9a
rgb(19, 154, 154)

Java
#1ab4bc
rgb(26, 180, 188)

Java
#1fd0d6
rgb(31, 208, 214)

関連記事