Owner reports of attention, activity, and impulsivity in dogs: a replication study
書誌情報Lit, L., Schweitzer, J.B., Iosif, AM. et al. Owner reports of attention, activity, and impulsivity in dogs: a replication study. Behav Brain Funct 6, 1 (2010). https://doi.org/10.1186/1744-9081-6-1
表題の論文を日本語訳してみました。翻訳アプリにかけた日本語訳を英文に照らして修正していますが、表記のゆれや訳の間違いがあるかもしれません。正確に内容を知りたい方は、原文をご覧ください。
Abstract:要旨
Background
When developing behaviour measurement tools that use third party assessments, such as parent report, it is important to demonstrate reliability of resulting scales through replication using novel cohorts.
保護者の報告など、第三者による評価を用いる行動測定ツールを開発する場合、新しいコホートを用いた再現により、得られた尺度の信頼性を実証することが重要である。
The domestic dog has been suggested as a model to investigate normal variation in attention, hyperactivity, and impulsive behaviours impaired in Attention Deficit Hyperactive Disorder (ADHD).
注意欠陥多動性障害(ADHD)で障害される注意力、多動性、衝動的行動の正常変異を調べるモデルとして、家庭犬が提案されている。
The human ADHD Rating Scale, modified for dogs and using owner-directed surveys, was applied in a European sample. We asked whether findings would be replicated utilizing an Internet survey in a novel sample, where unassisted survey completion, participant attitudes and breeds might affect previous findings.
人間のADHD評価尺度を犬用に修正し、飼い主主導型調査を用いて、ヨーロッパの標本に適用した。我々は、インターネット調査を用いた新しいサンプルにおいて、調査結果が再現されるかどうかを検討した。
Methods
Using a slightly modified version of the prior survey, we collected responses (n = 1030, 118 breeds representing 7 breed groups) primarily in the United States and Canada. This study was conducted using an Internet survey mechanism.
先行調査を若干修正したものを使用し、主に米国とカナダで回答を集めた(n=1030、7犬種グループを代表する118犬種)。この調査は、インターネット調査の仕組みを使って行われた。
Results
Reliability analyses confirmed two scales previously identified for dogs (inattention [IA], hyperactivity-impulsivity [HA-IM]). Models including age, training status, and breed group accounted for very little variance in subscales, with no effect of gender.
信頼性分析により、犬について以前に同定された2つの尺度(不注意[IA]、多動性-衝動性[HA-IM])が確認された。年齢、訓練状況、犬種群を含むモデルは下位尺度の分散をほとんど説明せず、性別の影響はなかった。
Conclusions
The factor invariance demonstrated in these findings confirms that owner report, using this modified human questionnaire, provides dog scores according to “inattention” and “hyperactivity-impulsivity” axes.
これらの結果で示された因子不変性は、この修正されたヒトの質問票を用いた飼い主の報告が、「不注意」と「多動性-衝動性」の軸に従った犬のスコアを提供することを裏付けている。
Further characterization of naturally occurring variability of attention, activity, and impulsivity in domestic dogs may provide insight into genetic backgrounds underlying behaviours impaired in attention and associated disorders.
家庭犬における注意力、活動性、衝動性の自然発生的な変動性をさらに明らかにすることで、注意力障害やそれに関連する障害の根底にある遺伝的背景を知ることができるかもしれない。
References:参考文献
A.P.A.: Diagnostic and statistical manual of mental disorders: DSM-IV-TR. 2000, Washington, DC: American Psychiatric Association, 4
Google ScholarKessler RC, Adler L, Barkley R, Biederman J, Conners CK, Demler O, Faraone SV, Greenhill LL, Howes MJ, Secnik K, Spencer T, Ustun TB, Walters EE, Zaslavsky AM: The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry. 2006, 163: 716-723. 10.1176/appi.ajp.163.4.716.
Article PubMed Central PubMed Google ScholarBarkley RA, Murphy KR, Fischer M: ADHD in Adults. 2007, New York: Guilford Press.
Google ScholarLesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT, Craig DW, Romanos J, Heine M, Meyer J, Freitag C, Warnke A, Romanos M, Schafer H, Walitza S, Reif A, Stephan DA, Jacob C: Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm. 2008, 115: 1573-85. 10.1007/s00702-008-0119-3.
Article CAS PubMed Google ScholarElia J, Devoto M: ADHD genetics: 2007 update. Curr Psychiatry Rep. 2007, 9: 434-439. 10.1007/s11920-007-0057-z.
Article PubMed Google ScholarWallis D, Russell HF, Muenke M: Genetics of attention deficit/hyperactivity disorder. J Pediatr Psychol. 2008, 33: 1085-99. 10.1093/jpepsy/jsn049.
Article PubMed Google ScholarSagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57: 1239-1247. 10.1016/j.biopsych.2005.02.002.
Article PubMed Google ScholarSchneider JS, Sun ZQ, Roeltgen DP: Effects of dopamine agonists on delayed response performance in chronic low-dose MPTP-treated monkeys. Pharmacol Biochem Behav. 1994, 48: 235-240. 10.1016/0091-3057(94)90522-3.
Article CAS PubMed Google ScholarRoeltgen DP, Schneider JS: Task persistence and learning ability in normal and chronic low dose MPTP-treated monkeys. Behav Brain Res. 1994, 60: 115-124. 10.1016/0166-4328(94)90138-4.
Article CAS PubMed Google ScholarRoeltgen DP, Schneider JS: Chronic low-dose MPTP in nonhuman primates: a possible model for attention deficit disorder. J Child Neurol. 1991, 6 (Suppl): S82-89.
PubMed Google ScholarRussell VA, Sagvolden T, Johansen EB: Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct. 2005, 1: 9-10.1186/1744-9081-1-9.
Article PubMed Central PubMed Google ScholarSagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000, 24: 31-39. 10.1016/S0149-7634(99)00058-5.
Article CAS PubMed Google ScholarHowells FM, Bindewald L, Russell VA: Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats. Behav Brain Funct. 2009, 5: 24-10.1186/1744-9081-5-24.
Article PubMed Central PubMed Google ScholarHunziker MH, Saldana RL, Neuringer A: Behavioral variability in SHR and WKY rats as a function of rearing environment and reinforcement contingency. J Exp Anal Behav. 1996, 65: 129-144. 10.1901/jeab.1996.65-129.
Article PubMed Central CAS PubMed Google ScholarBerger DF, Sagvolden T: Sex differences in operant discrimination behaviour in an animal model of attention-deficit hyperactivity disorder. Behav Brain Res. 1998, 94: 73-82. 10.1016/S0166-4328(97)00171-X.
Article CAS PubMed Google ScholarAlsop B: Reprint of “Problems with spontaneously hypertensive rats (SHR) as a model of attention-deficit/hyperactivity disorder (AD/HD)”. J Neurosci Methods. 2007, 166: XV-XXI. 10.1016/j.jneumeth.2006.12.019.
Article PubMed Google ScholarBull E, Reavill C, Hagan JJ, Overend P, Jones DNC: Evaluation of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder: acquisition and performance of the DRL-60s test. Behav Brain Res. 2000, 109: 27-35. 10.1016/S0166-4328(99)00156-4.
Article CAS PubMed Google ScholarBergh van den FS, Bloemarts E, Chan JSW, Groenink L, Olivier B, Oosting RS: Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol Biochem Behav. 2006, 83: 380-390. 10.1016/j.pbb.2006.02.018.
Article PubMed Google ScholarSagvolden T, Dasbanerjee T, Zhang-James Y, Middleton F, Faraone S: Behavioral and genetic evidence for a novel animal model of attention-deficit/hyperactivity disorder predominantly inattentive subtype. Behav Brain Funct. 2008, 4: 56-10.1186/1744-9081-4-56.
Article PubMed Central CAS PubMed Google ScholarSagvolden T, Johansen EB, Woien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby O, Jensen V, Aase H, Russell VA, Killeen PR, Dasbanerjee T, Middleton FA, Faraone SV: The spontaneously hypertensive rat model of ADHD–the importance of selecting the appropriate reference strain. Neuropharmacology. 2009, 57: 619-626. 10.1016/j.neuropharm.2009.08.004.
Article PubMed Central CAS PubMed Google ScholarHess EJ, Rogan PK, Domoto M, Tinker DE, Ladda RL, Ramer JC: Absence of linkage of apparently single gene mediated ADHD with the human syntenic region of the mouse mutant coloboma. Am J Med Genet. 1995, 60: 573-579. 10.1002/ajmg.1320600619.
Article CAS PubMed Google ScholarRaber J, Mehta PP, Kreifeldt M, Parsons LH, Weiss F, Bloom FE, Wilson MC: Coloboma hyperactive mutant mice exhibit regional and transmitter-specific deficits in neurotransmission. J Neurochem. 1997, 68: 176-186.
Article CAS PubMed Google ScholarSteffensen SC, Wilson MC, Henriksen SJ: Coloboma contiguous gene deletion encompassing Snap alters hippocampal plasticity. Synapse. 1996, 22: 281-289. 10.1002/(SICI)1098-2396(199603)22:3<281::AID-SYN11>3.0.CO;2-2.
Article CAS PubMed Google ScholarWilson MC: Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev. 2000, 24: 51-57. 10.1016/S0149-7634(99)00064-0.
Article CAS PubMed Google ScholarGainetdinov RR, Caron MG: An animal model of attention deficit hyperactivity disorder. Mol Med Today. 2000, 6: 43-44. 10.1016/S1357-4310(99)01616-0.
Article CAS PubMed Google ScholarGiros B, Jaber M, Jones SR, Wightman RM, Caron MG: Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996, 379: 606-612. 10.1038/379606a0.
Article CAS PubMed Google ScholarCasolini P, Zuena AR, Cinque C, Matteucci P, Alema GS, Adriani W, Carpinelli G, Santoro F, Alleva E, Bosco P, Nicoletti F, Laviola G, Catalani A: Sub-neurotoxic neonatal anoxia induces subtle behavioural changes and specific abnormalities in brain group-I metabotropic glutamate receptors in rats. J Neurochem. 2005, 95: 137-145. 10.1111/j.1471-4159.2005.03349.x.
Article CAS PubMed Google ScholarDecker MJ, Hue GE, Caudle WM, Miller GW, Keating GL, Rye DB: Episodic neonatal hypoxia evokes executive dysfunction and regionally specific alterations in markers of dopamine signaling. Neuroscience. 2003, 117: 417-425. 10.1016/S0306-4522(02)00805-9.
Article CAS PubMed Google ScholarDalley JW, Theobald DE, Pereira EA, Li PM, Robbins TW: Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology (Berl). 2002, 164: 329-340. 10.1007/s00213-002-1215-y.
Article CAS Google ScholarCarpenter DO, Hussain RJ, Berger DF, Lombardo JP, Park HY: Electrophysiologic and behavioral effects of perinatal and acute exposure of rats to lead and polychlorinated biphenyls. Environ Health Perspect. 2002, 110 (Suppl 3): 377-386.
Article PubMed Central CAS PubMed Google ScholarHolene E, Nafstad I, Skaare JU, Sagvolden T: Behavioural hyperactivity in rats following postnatal exposure to sub-toxic doses of polychlorinated biphenyl congeners 153 and 126. Behav Brain Res. 1998, 94: 213-224. 10.1016/S0166-4328(97)00181-2.
Article CAS PubMed Google ScholarDasBanerjee T, Middleton FA, Berger DF, Lombardo JP, Sagvolden T, Faraone SV: A comparison of molecular alterations in environmental and genetic rat models of ADHD: a pilot study. Am J Med Genet B Neuropsychiatr Genet. 2008, 147B: 1554-1563. 10.1002/ajmg.b.30877.
Article PubMed Central CAS PubMed Google ScholarSpady TC, Ostrander EA: Canine behavioral genetics: pointing out the phenotypes and herding up the genes. Am J Hum Genet. 2008, 82: 10-18. 10.1016/j.ajhg.2007.12.001.
Article PubMed Central CAS PubMed Google ScholarKarlsson EK, Lindblad-Toh K: Leader of the pack: gene mapping in dogs and other model organisms. Nat Rev Genet. 2008, 9: 713-725. 10.1038/nrg2382.
Article CAS PubMed Google ScholarOverall KL: Natural animal models of human psychiatric conditions: assessment of mechanism and validity. Prog Neuropsychopharmacol Biol Psychiatry. 2000, 24: 727-776. 10.1016/S0278-5846(00)00104-4.
Article CAS PubMed Google ScholarHelton WS: Animal expertise, conscious or not. Anim Cogn. 2005, 8: 67-74. 10.1007/s10071-004-0234-y.
Article PubMed Google ScholarHelton WS: Deliberate practice in dogs: a canine model of expertise. J Gen Psychol. 2007, 134: 247-257. 10.3200/GENP.134.2.247-258.
Article PubMed Google ScholarHejjas K, Vas J, Kubinyi E, Sasvari-Szekely M, Miklosi A, Ronai Z: Novel repeat polymorphisms of the dopaminergic neurotransmitter genes among dogs and wolves. Mamm Genome. 2007, 18: 871-879. 10.1007/s00335-007-9070-0.
Article PubMed Google ScholarHejjas K, Vas J, Topal J, Szantai E, Ronai Z, Szekely A, Kubinyi E, Horvath Z, Sasvari-Szekely M, Miklosi A: Association of polymorphisms in the dopamine D4 receptor gene and the activity-impulsivity endophenotype in dogs. Anim Genet. 2007, 38: 629-633.
Article CAS PubMed Google ScholarVas J, Topal J, Pech E, Miklosi A: Measuring attention deficit and activity in dogs: a new application and validation of a human ADHD questionnaire. Appl Anim Behav Sci. 2007, 103: 105-117. 10.1016/j.applanim.2006.03.017.
Article Google ScholarLindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, deJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin C-W, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli K-P, Parker HG, Pollinger JP, Searle SMJ, Sutter NB, Thomas R, Webber C, Lander ES: Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005, 438: 803-819. 10.1038/nature04338.
Article CAS PubMed Google ScholarMiklosi A, Topal J, Csanyi V: Big thoughts in small brains? Dogs as a model for understanding human social cognition. Neuroreport. 2007, 18: 467-471. 10.1097/WNR.0b013e3280287aae.
Article PubMed Google ScholarBrauer J, Kaminski J, Riedel J, Call J, Tomasello M: Making inferences about the location of hidden food: social dog, causal ape. J Comp Psychol. 2006, 120: 38-47. 10.1037/0735-7036.120.1.38.
Article PubMed Google ScholarHare B, Brown M, Williamson C, Tomasello M: The domestication of social cognition in dogs. Science. 2002, 298: 1634-1636. 10.1126/science.1072702.
Article CAS PubMed Google ScholarSeksel K, Lindeman MJ: Use of clomipramine in treatment of obsessive-compulsive disorder, separation anxiety and noise phobia in dogs: a preliminary, clinical study. Aust Vet J. 2001, 79: 252-256. 10.1111/j.1751-0813.2001.tb11976.x.
Article CAS PubMed Google ScholarTopal J, Miklosi A, Csanyi V, Doka A: Attachment behavior in dogs (Canis familiaris): a new application of Ainsworth’s (1969) Strange Situation test. J Comp Psychol. 1998, 112: 219-229. 10.1037/0735-7036.112.3.219.
Article CAS PubMed Google ScholarDuPaul GJ:ADHD Rating Scale-IV: Checklist, Norms and Clinical Interpretations. 1998, New York: Guilford Press,
Google ScholarBarnard-Brak L, To Y: Examining parental nonresponse to stimulant treatment questions according to ethnicity. J Child Adolesc Psychopharmacol. 2009, 19: 301-304. 10.1089/cap.2008.0150.
Article PubMed Google ScholarHillemeier MM, Foster EM, Heinrichs B, Heier B: Racial differences in parental reports of attention-deficit/hyperactivity disorder behaviors. J Dev Behav Pediatr. 2007, 28: 353-361. 10.1097/DBP.0b013e31811ff8b8.
Article PubMed Central PubMed Google ScholarStaay van der FJ: Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy. Brain Res Rev. 2006, 52: 131-159. 10.1016/j.brainresrev.2006.01.006.
Article PubMed Google ScholarStaay van der FJ, Arndt SS, Nordquist RE: Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct. 2009, 5: 11-10.1186/1744-9081-5-11.
Article PubMed Central PubMed Google ScholarJohnson KA, Wiersema JR, Kuntsi J: What would Karl Popper say? Are current psychological theories of ADHD falsifiable? Behav Brain Funct 5:15. Behav Brain Funct. 2009, 5: 15-10.1186/1744-9081-5-15.
Article PubMed Central PubMed Google ScholarSurvey Monkey.
http://www.surveymonkey.comCronbach LJ, Meehl PE: Construct validity in psychological tests. Psychol Bull. 1955, 52: 281-302. 10.1037/h0040957.
Article CAS PubMed Google ScholarCronbach LJ: Coefficient alpha and the internal structure of tests. Psychometrika. 1951, 16: 297-334. 10.1007/BF02310555.
Article Google ScholarSPSS.
http://www.spss.comCortina JM: What is coefficient alpha – an examination of theory and applications. J Appl Psychol. 1993, 78: 98-104. 10.1037/0021-9010.78.1.98.
Article Google ScholarGuttman L: Some necessary conditions for common-factor analysis. Psychometrika. 1954, 19: 149-161. 10.1007/BF02289162.
Article Google ScholarKaiser HF: A note on Guttman lower bound for the number of common factors. Br J Math Stat Psychol. 1961, 14: 1-2.
Article Google ScholarGosling SD, Vazire S, Srivastava S, John OP: Should we trust web-based studies? A comparative analysis of six preconceptions about internet questionnaires. Am Psychol. 2004, 59: 93-104. 10.1037/0003-066X.59.2.93.
Article PubMed Google ScholarNeilson JC, Hart BL, Cliff KD, Ruehl WW: Prevalence of behavioral changes associated with age-related cognitive impairment in dogs. J Am Vet Med Assoc. 2001, 218: 1787-1791. 10.2460/javma.2001.218.1787.
Article CAS PubMed Google ScholarHorowitz AC, Bekoff M: Naturalizing anthropomorphism: behavioral prompts to our humanizing of animals. Anthrozoos. 2007, 20: 23-35.
Article Google ScholarSagvolden T, Johansen EB, Wøien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby Ø, Jensen V, Aase H, Russell VA, Killeen PR, DasBanerjee T, Middleton FA, Faraone SV: The spontaneously hypertensive rat model of ADHD – The importance of selecting the appropriate reference strain. Neuropharmacology. 2009, 57: 619-626. 10.1016/j.neuropharm.2009.08.004.
Article PubMed Central CAS PubMed Google Scholar
Keywords:
Attention Deficit Hyperactivity Disorder, Training Status, Internet Survey, Breed Group, Attention Deficit Hyperactivity Disorder Rate Scale
Background When developing behaviour measurement tools that use third party assessments, such as parent report, it is important to demonstrate reliability of resulting scales through replication using novel cohorts. The domestic dog has been suggested as a model to investigate normal variation in attention, hyperactivity, and impulsive behaviours impaired in Attention Deficit Hyperactive Disorder (ADHD). The human ADHD Rating Scale, modified for dogs and using owner-directed surveys, was applied in a European sample. We asked whether findings would be replicated utilizing an Internet survey in a novel sample, where unassisted survey completion, participant attitudes and breeds might affect previous findings. Methods Using a slightly modified version of the prior survey, we collected responses (n = 1030, 118 breeds representing 7 breed groups) primarily in the United States and Canada. This study was conducted using an Internet survey mechanism. Results Reliability analyses confirmed two scales previously identified for dogs (inattention [IA], hyperactivity-impulsivity [HA-IM]). Models including age, training status, and breed group accounted for very little variance in subscales, with no effect of gender. Conclusions The factor invariance demonstrated in these findings confirms that owner report, using this modified human questionnaire, provides dog scores according to "inattention" and "hyperactivity-impulsivity" axes. Further characterization of naturally occurring variability of attention, activity, and impulsivity in domestic dogs may provide insight into genetic backgrounds underlying behaviours impaired in attention and associated disorders.